
GCPC 2020
Presentation of solutions

GCPC 2020 Solutions

Jury and Testers

Thanks to the jury:

Michael Baer (FAU)
Julian Baldus (UdS)
Gregor Behnke (Freiburg)
Sandro Esquivel (CAU)
Maximilian Fichtl (TUM)

Nathan Maier (Ulm)
Tobias Meggendorfer (TUM)
Philipp Reger (FAU)
Gregor Schwarz (TUM)
Paul Wild (FAU)

Thanks to our test readers:

Gregor Matl (TUM) Marcel Wienöbst (Lübeck)

GCPC 2020 Solutions

Statistics

0 50 100 150 200 250 300
0

20

40

60

80

100

120

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

GCPC 2020 Solutions

Statistics

0 50 100 150 200 250 300
0

20

40

60

80

100

120

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

GCPC 2020 Solutions

F – Flip Flow

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Paul Wild GCPC 2020 Solutions

F – Flip Flow

Problem
Given a list of times at which an hourglass is flipped over, how much sand remains on
the upper half at the end of this process?

Solution
The process finishes after at most 106 seconds, so simulate step by step:

int upper = 0, lower = s;

for (int k = 0; k < t; k++) {

if (flip[k]) swap(upper ,lower);

if (upper > 0) upper --, lower ++;

}

Can also be solved in O(n), where n is the number of flips.

Problem Author: Paul Wild GCPC 2020 Solutions

F – Flip Flow

Problem
Given a list of times at which an hourglass is flipped over, how much sand remains on
the upper half at the end of this process?

Solution
The process finishes after at most 106 seconds, so simulate step by step:

int upper = 0, lower = s;

for (int k = 0; k < t; k++) {

if (flip[k]) swap(upper ,lower);

if (upper > 0) upper --, lower ++;

}

Can also be solved in O(n), where n is the number of flips.

Problem Author: Paul Wild GCPC 2020 Solutions

A – Adolescent Architecture

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Paul Wild GCPC 2020 Solutions

A – Adolescent Architecture

Problem
Given some cubical and cylindrical toy blocks, can they all be stacked into a single
tower without there being any overhangs?

Solution
If a solution exists, the footprint area of the blocks must always decrease towards
the top of the tower.
Sort the blocks by area and check for each adjacent pair if one fits inside the other.
There is a simple formula for each of the four cases.

Problem Author: Paul Wild GCPC 2020 Solutions

A – Adolescent Architecture

Problem
Given some cubical and cylindrical toy blocks, can they all be stacked into a single
tower without there being any overhangs?

Solution
If a solution exists, the footprint area of the blocks must always decrease towards
the top of the tower.

Sort the blocks by area and check for each adjacent pair if one fits inside the other.
There is a simple formula for each of the four cases.

Problem Author: Paul Wild GCPC 2020 Solutions

A – Adolescent Architecture

Problem
Given some cubical and cylindrical toy blocks, can they all be stacked into a single
tower without there being any overhangs?

Solution
If a solution exists, the footprint area of the blocks must always decrease towards
the top of the tower.
Sort the blocks by area and check for each adjacent pair if one fits inside the other.

There is a simple formula for each of the four cases.

Problem Author: Paul Wild GCPC 2020 Solutions

A – Adolescent Architecture

Problem
Given some cubical and cylindrical toy blocks, can they all be stacked into a single
tower without there being any overhangs?

Solution
If a solution exists, the footprint area of the blocks must always decrease towards
the top of the tower.
Sort the blocks by area and check for each adjacent pair if one fits inside the other.
There is a simple formula for each of the four cases.

Problem Author: Paul Wild GCPC 2020 Solutions

M – Mixtape Management

0 50 100 150 200 250 300
0

5

10

15

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Paul Wild GCPC 2020 Solutions

M – Mixtape Management

Problem
Given a permutation p1, . . . , pn, find a sequence of positive integers a1, . . . , an where
str(a1) < · · · < str(an) lexicographically and ap1 < · · · < apn by value.

Solution
Compose every number from three parts:

1 053 0000000000

Leading 1

The number i , padded to fixed width

Sequence of pi zeroes

This guarantees that all numbers are valid and the sorting is correct in both cases.

Problem Author: Paul Wild GCPC 2020 Solutions

M – Mixtape Management

Problem
Given a permutation p1, . . . , pn, find a sequence of positive integers a1, . . . , an where
str(a1) < · · · < str(an) lexicographically and ap1 < · · · < apn by value.

Solution
Compose every number from three parts:

1 053 0000000000

Leading 1

The number i , padded to fixed width

Sequence of pi zeroes

This guarantees that all numbers are valid and the sorting is correct in both cases.

Problem Author: Paul Wild GCPC 2020 Solutions

C – Confined Catching

0 50 100 150 200 250 300
0

2

4

6

8

10

12

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Philipp Reger GCPC 2020 Solutions

C – Confined Catching

Problem
You are playing a board game on a square grid. You have two pieces while your
AI opponent has one. Catch the opponent’s piece within a limited number of turns.

Solution
Obviously, you have to move your pieces towards the AI’s.

Problem Author: Philipp Reger GCPC 2020 Solutions

C – Confined Catching

Problem
You are playing a board game on a square grid. You have two pieces while your
AI opponent has one. Catch the opponent’s piece within a limited number of turns.

Solution
Obviously, you have to move your pieces towards the AI’s.

Problem Author: Philipp Reger GCPC 2020 Solutions

C – Confined Catching

Solution cont.
However, just reducing the distance in all your turns may not be enough, as the AI
may be able to keep fleeing forever.

Problem Author: Philipp Reger GCPC 2020 Solutions

C – Confined Catching

Solution cont.
However, just reducing the distance in all your turns may not be enough, as the AI
may be able to keep fleeing forever.

Problem Author: Philipp Reger GCPC 2020 Solutions

C – Confined Catching

Solution cont.
The crucial strategy is to have your two pieces behave slightly differently:

For your first piece, if it could move along either axis to get closer to the
opponent, move along the y axis first.
For your second piece, prioritize the x axis.

Eventually, the AI will be forced into a corner (or even lose before that), with nowhere
left to run.

Problem Author: Philipp Reger GCPC 2020 Solutions

C – Confined Catching

Solution cont.
The crucial strategy is to have your two pieces behave slightly differently:

For your first piece, if it could move along either axis to get closer to the
opponent, move along the y axis first.
For your second piece, prioritize the x axis.

Eventually, the AI will be forced into a corner (or even lose before that), with nowhere
left to run.

Problem Author: Philipp Reger GCPC 2020 Solutions

B – Bookshelf Building

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Gregor Schwarz GCPC 2020 Solutions

B – Bookshelf Building

Problem
Given n books of different widths and heights, can you fit them into a rectangular
bookshelf using at most one separating board?

Problem Author: Gregor Schwarz GCPC 2020 Solutions

B – Bookshelf Building

Solution
Place the tallest book in the bottom left corner of the shelf.
Install the board at the height of the tallest book.
Greedily place all books in the lower section of the shelf that do not fit in the
upper section.
For the remaining capacity in the lower section, solve a knapsack problem – the
more you fit into the lower section, the more space you have left in the upper
section.
Place all remaining books in the upper section.
Special case: install no board if tallest book has height y
Complexity: O(n x)

Problem Author: Gregor Schwarz GCPC 2020 Solutions

G – Gravity Grid

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Paul Wild GCPC 2020 Solutions

G – Gravity Grid

Problem
Alice and Bob are playing a version of Connect Four on an h×w board where the goal
is to complete a row of k tiles. Given a log of their moves, determine the winner.

Solution
For each starting cell and each of the eight directions store the length of the
longest run of equal tiles in that direction. Update these values as new tiles drop.
After each drop, it is enough to update the values in the current cell and the
opposite cell of the run in each direction.
Time and space complexity: O(h · w).
Several other solutions are possible, for instance using binary search and a
two-pointer method or using a monotone queue.

Problem Author: Paul Wild GCPC 2020 Solutions

G – Gravity Grid

Problem
Alice and Bob are playing a version of Connect Four on an h×w board where the goal
is to complete a row of k tiles. Given a log of their moves, determine the winner.

Solution
For each starting cell and each of the eight directions store the length of the
longest run of equal tiles in that direction. Update these values as new tiles drop.

After each drop, it is enough to update the values in the current cell and the
opposite cell of the run in each direction.
Time and space complexity: O(h · w).
Several other solutions are possible, for instance using binary search and a
two-pointer method or using a monotone queue.

Problem Author: Paul Wild GCPC 2020 Solutions

G – Gravity Grid

Problem
Alice and Bob are playing a version of Connect Four on an h×w board where the goal
is to complete a row of k tiles. Given a log of their moves, determine the winner.

Solution
For each starting cell and each of the eight directions store the length of the
longest run of equal tiles in that direction. Update these values as new tiles drop.
After each drop, it is enough to update the values in the current cell and the
opposite cell of the run in each direction.

Time and space complexity: O(h · w).
Several other solutions are possible, for instance using binary search and a
two-pointer method or using a monotone queue.

Problem Author: Paul Wild GCPC 2020 Solutions

G – Gravity Grid

Problem
Alice and Bob are playing a version of Connect Four on an h×w board where the goal
is to complete a row of k tiles. Given a log of their moves, determine the winner.

Solution
For each starting cell and each of the eight directions store the length of the
longest run of equal tiles in that direction. Update these values as new tiles drop.
After each drop, it is enough to update the values in the current cell and the
opposite cell of the run in each direction.
Time and space complexity: O(h · w).

Several other solutions are possible, for instance using binary search and a
two-pointer method or using a monotone queue.

Problem Author: Paul Wild GCPC 2020 Solutions

G – Gravity Grid

Problem
Alice and Bob are playing a version of Connect Four on an h×w board where the goal
is to complete a row of k tiles. Given a log of their moves, determine the winner.

Solution
For each starting cell and each of the eight directions store the length of the
longest run of equal tiles in that direction. Update these values as new tiles drop.
After each drop, it is enough to update the values in the current cell and the
opposite cell of the run in each direction.
Time and space complexity: O(h · w).
Several other solutions are possible, for instance using binary search and a
two-pointer method or using a monotone queue.

Problem Author: Paul Wild GCPC 2020 Solutions

K – Knightly Knowledge

0 50 100 150 200 250 300
0

10

20

30

40

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Michael Baer GCPC 2020 Solutions

K – Knightly Knowledge
Problem
Given are the coordinates of monuments and churches. Churches with ≥ 2 mon. in
their row / col are mighty. Place one monument to maximize the number of churches
that are turned mighty.

Solution O((m + c)2)
Count monuments and ordinary churches per row / column.
Iterate over all reasonable locations to find the best spot.
Reasonable: At least on church or monument in the same row and column.
Do not count a church at the intersection twice.

Solution O(m + c)
As above, but only check best row / col. They are either optimal or off by one.
 No other intersection can be better.
Each non-optimal intersection has a church at the spot at most c.

Problem Author: Michael Baer GCPC 2020 Solutions

K – Knightly Knowledge
Problem
Given are the coordinates of monuments and churches. Churches with ≥ 2 mon. in
their row / col are mighty. Place one monument to maximize the number of churches
that are turned mighty.

Solution O((m + c)2)
Count monuments and ordinary churches per row / column.
Iterate over all reasonable locations to find the best spot.
Reasonable: At least on church or monument in the same row and column.
Do not count a church at the intersection twice.

Solution O(m + c)
As above, but only check best row / col. They are either optimal or off by one.
 No other intersection can be better.
Each non-optimal intersection has a church at the spot at most c.

Problem Author: Michael Baer GCPC 2020 Solutions

D – Decorative Dominoes

0 50 100 150 200 250 300
0

2

4

6

8

10

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Julian Baldus GCPC 2020 Solutions

D – Decorative Dominoes

Problem
Given an arrangement of dominoes without numbers, assign numbers to both halves of
each domino such that

each domino half is adjacent to a half of another domino with the same number
on it;
all numbers appear at most twice among all dominoes.

Problem Author: Julian Baldus GCPC 2020 Solutions

D – Decorative Dominoes

Solution
Transform the problem into a graph where the nodes are the domino halves and
the edges exist between adjacent halves belonging to different dominoes.
The graph is bipartite: Imagine a large black and white checkered board over the
coordinate grid. Connected nodes must have different colors.
Find a perfect bipartite matching on this graph.
Matched nodes are assigned the same number.
Every valid numbering corresponds to a perfect matching.
So whenever a solution exists, this algorithm will find one.
Complexity: O(n2)

Problem Author: Julian Baldus GCPC 2020 Solutions

I – Impressive Integers

0 50 100 150 200 250 300
0

1

2

3

4

5

6

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Nathan Maier GCPC 2020 Solutions

I – Impressive Integers

Problem
For a given integer n, determine if there exist integers a, b, and c such that an
equilateral triangle with side length c can be tiled with exactly n triangles with side
lengths a or b.
If possible, output a valid tiling.

Problem Author: Nathan Maier GCPC 2020 Solutions

I – Impressive Integers

Solution
By trying out small numbers one can find that it is impossible for n = 2, 3, 5.
For all other n > 0 a valid tiling can be found as follows:

n = 1 a = b = c
n > 2 is even Use pattern 1a with n − 1 triangles in the bottom row.
n > 5 is odd Use pattern 1b with n − 4 triangles in the bottom row.

(a) Even pattern. (b) Odd pattern.

Complexity: O(n)

Problem Author: Nathan Maier GCPC 2020 Solutions

L – Lexicographical Lecturing

0 50 100 150 200 250 300
0

2

4

6

8

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Maximilian Fichtl GCPC 2020 Solutions

L – Lexicographical Lecturing

Problem
Find indices i < j describing minimal-length substrings, such that the order with
respect to the substring is equal the the original order.

Problem Author: Maximilian Fichtl GCPC 2020 Solutions

L – Lexicographical Lecturing

Solution
If any two subsequent strings sk , sk+1 are ordered correctly w.r.t. interval (i , j),
then all strings can be ordered correctly w.r.t. (i , j).
Consider all subsequent strings sk , sk+1 one after another.
For each index i , let αki be the smallest index such that sk and sk+1 are sorted
correctly w.r.t. interval (i , αki).
If no such index exists, set αki =∞.
Determining all αki for two subsequent strings can be done in O(`) using dynamic
programming.
For each index i , determine the maximum αki over all k.
Output the shortest interval among all (i ,maxk{αki}).
Complexity: O(n `)

Problem Author: Maximilian Fichtl GCPC 2020 Solutions

J – Jeopardised Journey

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Problem
Given points (glades) and circles (hills). You can go from point A to B iff the direct
line between them does not intersect a circle or any other point.
Opponent selects (unknown) one point to block. Determine for a starting point, which
other points can be reached no matter which point is blocked by the opponent.

Solution
Two part problem:

Geometry: Determine for which points A and B there is no circle/other point
between them and build a graph.
Graph: Find all nodes of the graph with two fully disjunct paths to node 0.

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Problem
Given points (glades) and circles (hills). You can go from point A to B iff the direct
line between them does not intersect a circle or any other point.
Opponent selects (unknown) one point to block. Determine for a starting point, which
other points can be reached no matter which point is blocked by the opponent.

Solution
Two part problem:

Geometry: Determine for which points A and B there is no circle/other point
between them and build a graph.
Graph: Find all nodes of the graph with two fully disjunct paths to node 0.

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Solution: Geometry
1000 points and 1000 circles ⇒ We can’t test all pairs of points (would be O(n3)).

Angular Sorting per point.

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Solution: Geometry
1000 points and 1000 circles ⇒ We can’t test all pairs of points (would be O(n3)).

Angular Sorting per point.

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Consider one point (green).

A Circle “excludes” all points behind it.

Compute angles of tangents of circles and
the current point.

Compute angles between the current point
and all other points.

Sort these ≤ 2999 events (start and end
per circle and points)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Consider one point (green).

A Circle “excludes” all points behind it.

Compute angles of tangents of circles and
the current point.

Compute angles between the current point
and all other points.

Sort these ≤ 2999 events (start and end
per circle and points)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Consider one point (green).

A Circle “excludes” all points behind it.

Compute angles of tangents of circles and
the current point.

Compute angles between the current point
and all other points.

Sort these ≤ 2999 events (start and end
per circle and points)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Consider one point (green).

A Circle “excludes” all points behind it.

Compute angles of tangents of circles and
the current point.

Compute angles between the current point
and all other points.

Sort these ≤ 2999 events (start and end
per circle and points)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Consider one point (green).

A Circle “excludes” all points behind it.

Compute angles of tangents of circles and
the current point.

Compute angles between the current point
and all other points.

Sort these ≤ 2999 events (start and end
per circle and points)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Process events in angular order
Maintain set S of currently started,
but not finished circles (with the
distance of the tangent points)
If next event is

Start circle: add to S
End circle: remove from S
Point: is safe if all s ∈ S have a
higher distance than all tanget
points (use a C++ multiset).

Runtime: O(n log n)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Process events in angular order
Maintain set S of currently started,
but not finished circles (with the
distance of the tangent points)
If next event is

Start circle: add to S

End circle: remove from S
Point: is safe if all s ∈ S have a
higher distance than all tanget
points (use a C++ multiset).

Runtime: O(n log n)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Process events in angular order
Maintain set S of currently started,
but not finished circles (with the
distance of the tangent points)
If next event is

Start circle: add to S
End circle: remove from S

Point: is safe if all s ∈ S have a
higher distance than all tanget
points (use a C++ multiset).

Runtime: O(n log n)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Process events in angular order
Maintain set S of currently started,
but not finished circles (with the
distance of the tangent points)
If next event is

Start circle: add to S
End circle: remove from S
Point: is safe if all s ∈ S have a
higher distance than all tanget
points (use a C++ multiset).

Runtime: O(n log n)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Process events in angular order
Maintain set S of currently started,
but not finished circles (with the
distance of the tangent points)
If next event is

Start circle: add to S
End circle: remove from S
Point: is safe if all s ∈ S have a
higher distance than all tanget
points (use a C++ multiset).

Runtime: O(n log n)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Solution: Geometry Pitfalls
Implementation has a lot of pitfalls

Multiple events with same angle: end circle – points in increasing distance – begin
circle
For multiple points with same angle: add edge only to the first one.

Circles that intersect with the (+, 0) axis have αbegin > αend .
⇒ split into two along angle 0.

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Solution: Graph
Find all nodes of a graph G = (V ,E) for which two fully disjunct paths to node 0 exist.

n ≤ 2000 so O(n2) would be ok.

Try every blocked vertex. Do DFS from node 0.
Count how often each vertex is reached. If it is reached in |V | − 2 DFSs (it is blocked
once) then it is safe.
Graph contains n2 edges, so this would have runtime n3 (too slow).

Better solution: Articulation nodes (can be determined in linear time using DFS).
A node is safe if it is reachable from 0 without traversing an articulation node.
2× DFS ⇒ O(n2)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Solution: Graph
Find all nodes of a graph G = (V ,E) for which two fully disjunct paths to node 0 exist.

n ≤ 2000 so O(n2) would be ok.

Try every blocked vertex. Do DFS from node 0.
Count how often each vertex is reached. If it is reached in |V | − 2 DFSs (it is blocked
once) then it is safe.
Graph contains n2 edges, so this would have runtime n3 (too slow).

Better solution: Articulation nodes (can be determined in linear time using DFS).
A node is safe if it is reachable from 0 without traversing an articulation node.
2× DFS ⇒ O(n2)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Solution: Graph
Find all nodes of a graph G = (V ,E) for which two fully disjunct paths to node 0 exist.

n ≤ 2000 so O(n2) would be ok.

Try every blocked vertex. Do DFS from node 0.
Count how often each vertex is reached. If it is reached in |V | − 2 DFSs (it is blocked
once) then it is safe.
Graph contains n2 edges, so this would have runtime n3 (too slow).

Better solution: Articulation nodes (can be determined in linear time using DFS).
A node is safe if it is reachable from 0 without traversing an articulation node.
2× DFS ⇒ O(n2)

Problem Author: Gregor Behnke GCPC 2020 Solutions

J – Jeopardised Journey

Solution: Graph
Find all nodes of a graph G = (V ,E) for which two fully disjunct paths to node 0 exist.

n ≤ 2000 so O(n2) would be ok.

Try every blocked vertex. Do DFS from node 0.
Count how often each vertex is reached. If it is reached in |V | − 2 DFSs (it is blocked
once) then it is safe.
Graph contains n2 edges, so this would have runtime n3 (too slow).

Better solution: Articulation nodes (can be determined in linear time using DFS).
A node is safe if it is reachable from 0 without traversing an articulation node.
2× DFS ⇒ O(n2)

Problem Author: Gregor Behnke GCPC 2020 Solutions

E – Exhausting Errands

0 50 100 150 200 250 300
0

2

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Sandro Esquivel GCPC 2020 Solutions

E – Exhausting Errands

Problem
Given n pairs of integers (a1, b1), ..., (an, bn), find the length of the shortest 1D route
visiting all positions ai , bi subject to the constraint that ai is visited before bi . The
route can start at any ai and finish at any bi .

Solution
Idea: Complete all “forward“ errands during one left-to-right run, complete
“backward” errands either before, after or during this run.

start stop

Problem Author: Sandro Esquivel GCPC 2020 Solutions

E – Exhausting Errands

Problem
Given n pairs of integers (a1, b1), ..., (an, bn), find the length of the shortest 1D route
visiting all positions ai , bi subject to the constraint that ai is visited before bi . The
route can start at any ai and finish at any bi .

Solution
Idea: Complete all “forward“ errands during one left-to-right run, complete
“backward” errands either before, after or during this run.

start stop

Problem Author: Sandro Esquivel GCPC 2020 Solutions

E – Exhausting Errands

Solution: Preparation
Partition pairs into “forward” pairs (ai ≤ bi) and “backward” pairs (ai > bi).
Sort pairs within each partition ascending by start position.
Merge all overlapping or adjoint pairs within each partition.
Denote resulting m “forward” pairs as (x1, y1), ..., (xm, ym) and m′ “backward”
pairs as (x ′

1, y ′
1), ..., (x ′

m′ , y ′
m′).

Note that x1 ≤ y1 < ... < xm ≤ ym and y ′
1 < x ′

1 < ... < y ′
m′ < x ′

m′ .
Complexity: O(n log(n)) for sorting, O(n) for merging

x1 y1 y2x2 y3x3

x′1 y′1 x′2 y′2 x′3 y′3 x′4 y′4

Problem Author: Sandro Esquivel GCPC 2020 Solutions

E – Exhausting Errands

Solution: Special Case 1
Assume that m′ = 0. Then the trivial solution is to start at x1 and finish at ym
(single “forward pass”). The resulting distance is ym − x1.

Solution: Special Case 2
Assume that m′ = 1. Then we have three options:

Go from x ′1 to y ′1 before the forward pass and proceed to x1 afterwards. The extra
distance is x ′1 − y ′1 + |x1 − y ′1|.
Stop at x ′1 during the forward pass, go to y ′i and return to x ′i (only applicable if
x1 < x ′1 < ym). The extra distance is 2(x ′1 − y ′1).
Process to x ′1 and y ′1 after the forward pass. The extra distance is x ′1− y ′1 + |x ′1− ym|.

Problem Author: Sandro Esquivel GCPC 2020 Solutions

E – Exhausting Errands

Solution: Special Case 1
Assume that m′ = 0. Then the trivial solution is to start at x1 and finish at ym
(single “forward pass”). The resulting distance is ym − x1.

Solution: Special Case 2
Assume that m′ = 1. Then we have three options:

Go from x ′1 to y ′1 before the forward pass and proceed to x1 afterwards. The extra
distance is x ′1 − y ′1 + |x1 − y ′1|.
Stop at x ′1 during the forward pass, go to y ′i and return to x ′i (only applicable if
x1 < x ′1 < ym). The extra distance is 2(x ′1 − y ′1).
Process to x ′1 and y ′1 after the forward pass. The extra distance is x ′1− y ′1 + |x ′1− ym|.

Problem Author: Sandro Esquivel GCPC 2020 Solutions

E – Exhausting Errands

Solution: General Case
Assume that m′ > 1. Now we can complete the first s backward errands before
the forward pass, the last t after and the remaining m′ − s − t backward errands
during the forward pass (0 ≤ s ≤ m′, 0 ≤ t ≤ m′ − s):

The extra distance for the first part is x ′s − y ′1 + |x1 − y ′1|.

The extra distance for the inbetween part is
m′−t∑
i=s+1

2(x ′i − y ′i).

The extra distance for the last part is x ′m′ − y ′m′−t+1 + |x ′m′ − ym|.
Check the total distance for all feasible s, t and pick the minimal solution.
Complexity: O(n2)

Problem Author: Sandro Esquivel GCPC 2020 Solutions

E – Exhausting Errands

Solution: Caveats
Solve also the mirrored problem, i. e., for errands (−a1,−b1), ..., (−an,−bn), and
pick its solution if better.
Do not evaluate special cases s = 0, t < m′ when x ′

1 ≤ x1 resp. t = 0, s < m′

when x ′
m′ ≥ ym (i. e., start points of some “inbetween” errands are outside of the

forward pass).
Use sum arrays for x ′

i and y ′
i to compute the extra distance for the inbetween part

in O(1).

Problem Author: Sandro Esquivel GCPC 2020 Solutions

H – Hectic Harbour

0 50 100 150 200 250 300
0

2

4

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Gregor Schwarz & Paul Wild GCPC 2020 Solutions

H – Hectic Harbour

Problem
Schedule two gantry cranes such that they finish their assigned tasks as fast as possible.

Problem Author: Gregor Schwarz & Paul Wild GCPC 2020 Solutions

H – Hectic Harbour

Solution
Define two DP arrays for cranes A and B:
dpA[i][j][p]: A finished task i , B finished task j .

A is at position of task i , B is at position p.
dpB[i][j][p]: A finished task i , B finished task j .

A is at position p, B is at position of task j .
Distinguish three cases when updating DP arrays:

1 A and B both perform their next task if they need exactly the same number of steps.
If not, consider case (2) or (3).

2 A performs next task while B moves as close as possible towards its next task.
3 B performs next task while A moves as close as possible towards its next task.

Always ensure that cranes do not crash.
Complexity: O(a b n)
Sweep line solutions in O(a b n log(n)) are also accepted.

Problem Author: Gregor Schwarz & Paul Wild GCPC 2020 Solutions

Weiteres Programm

Jetzt: Auflösung des Scoreboards und Siegerehrung
Anschließend Voice-Chat auf dem Discord-Server
Extended Contest mit den GCPC-Aufgaben (bald) unter

https://domjudge.cs.fau.de/

Danke für die Teilnahme!

GCPC 2020 Solutions

